References

- Abakumov, G. A., Cherkasov, V. K., Nevodchikov, V. I., Teplova, I. A., Zakharov, L. N., Fukin, G. K. & Struchkov, Y. T. (1996). *Russ. Chem. Bull.* 45, 446–450.
- Bhattacharya, S. & Pierpont, C. G. (1992). Inorg. Chem. 31, 35-39.
- Blower, P. J. & Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121-185.
- Cao, R., Hong, M. C., Jiang, F. L., Kang, B. S., Xue, X. L. & Lu, H. Q. (1996). Polyhedron, 15, 2661–2670.
- Clemente, J. M., Wong, C. Y., Bhattacharyya, P., Slawin, A. M. Z., Williams, D. J. & Woollins, J. D. (1994). *Polyhedron*, 13, 261–266.
- Coucouvanis, D., Jonasdottir, S. G., Christodoulou, D., Kim, C. G. & Kampf, J. W. (1993). *Inorg. Chem.* 32, 2987-2988.
- Curtis, D., Lesley, M. J. G., Norman, N. C., Orpen, A. G. & Starbuck, J. (1999). J. Chem. Soc. Dalton Trans. pp. 1687–1694.
- Darkwa, J. (1997). Inorg. Chim. Acta, 257, 137-141.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kinder, J. D. & Youngs, W. J. (1996). Organometallics, 15, 460-463.
- Lesley, M. J. G., Nguyen, P., Taylor, N. J., Marder, T. B., Scott, A. J., Clegg, W. & Norman, N. C. (1996). *Organometallics*, **15**, 5137-5154.
- Persson, C. & Andersson, C. (1993). Polyhedron, 12, 2569-2575.
- Pierpont, C. G. & Downs, H. H. (1975). Inorg. Chem. 14, 343-347.
- Sheldrick, G. M. (1997). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
- Siemens (1995a). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995b). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Acta Cryst. (1999). C55, 1275-1278

Tetrachlorotetrakis(propan-2-ol)uranium(IV) and tetrachlorotetrakis-(propan-2-ol)thorium(IV)

PAMELA L. GORDON,^{*a*} JULIA A. THOMPSON,^{*b*} JOHN G. WATKIN,^{*c*} CAROL J. BURNS,^{*c*} NANCY N. SAUER^{*c*} AND BRIAN L. SCOTT^{*c*}

^aCallaway Golfball Company, 2285 Rutherford Road, Carlsbad, CA 92008-8815, USA, ^bPolyIonix Separation Technologies Inc., Dayton, NJ 08810, USA, and ^cLos Alamos National Laboratory, Los Alamos, NM 87545, USA. E-mail: nsauer@lanl.gov

(Received 1 December 1998; accepted 6 April 1999)

Abstract

The title complexes, $[UCl_4(C_3H_8O)_4]$ and $[ThCl_4(C_3H_8O)_4]$, are isomorphous and crystallize in the tetragonal space group $I4_1/a$. The molecules have approximate dodecahedral symmetry and occupy sites of 4 symmetry. Principal bond lengths include U—Cl = 2.6478 (10), U—O = 2.478 (3), Th—Cl = 2.7066 (8) and Th—O = 2.515 (2) Å.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

In previous publications, we have examined the direct reaction between lanthanide and actinide metals and elemental iodine, employing either tetrahydrofuran (THF) or alcohols as solvent (Barnhart et al., 1995; Van der Sluys et al., 1992). We have now extended these studies to include the reaction of thorium and uranium metal turnings with chlorine gas, which may be conveniently bubbled through a flask containing isopropanol solvent and the appropriate actinide metal. Subsequent work-up provides crystals of uranium or thorium tetrachloride which contain four coordinated molecules of isopropanol. UCl₄(PrOH)₄ (Smith et al., 1969) and ThCl₄(ⁱPrOH)₄ (El Aggan, 1973) have been described previously but they have not been structurally characterized. We report here the structural characterization of tetrachlorotetrakis(isopropanol)uranium(IV), (I), and tetrachlorotetrakis(isopropanol)thorium(IV), (II).

Complexes (I) and (II) are isostructural and crystallize in the tetragonal space group $I4_1/a$. The complexes occupy sites of $\overline{4}$ symmetry (Figs. 1 and 2). The ligands define a somewhat distorted dodecahedral structure about the metal center, with the chloride ligands occupying 'B' sites and the isopropanol ligands occupying 'A' sites (Kepert, 1978).

The U—Cl distance of 2.6478 (10) Å is slightly longer than the mean value of 2.595 (2) Å observed in seven-coordinate UCl₄(thf)₃ (Van der Sluys *et al.*, 1993),

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The view is down the fourfold axis of the $\overline{4}$ symmetry element [symmetry codes: (i) $y - \frac{1}{4}, \frac{5}{4} - x, \frac{1}{4} - z$; (ii) $\frac{5}{4} - y, \frac{1}{4} + x, \frac{1}{4} - z$; (iii) $1 - x, \frac{3}{2} - y, z$].

Acta Crystallographica Section C ISSN 0108-2701 © 1999

Fig. 2. The molecular structure of (II), showing the atom-numbering scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The view is down the fourfold axis of the $\overline{4}$ symmetry element [symmetry codes: (i) $y - \frac{1}{4}, \frac{5}{4} - x, \frac{1}{4} - z$; (ii) $\frac{5}{4} - y$, $\frac{1}{4} + x$, $\frac{1}{4} - z$; (iii) 1 - x, $\frac{3}{2} - y$, z].

but is directly comparable to the distances of 2.627(4)and 2.620 (4) Å found in UCl₄(MeCN)₄ (Cotton et al., 1984). The U-O distance of 2.478 (3) Å is longer than the value of 2.40(1) Å found for the isopropanol ligands in $U_2I_4(O^iPr)_4(^iPrOH)_2$ (Van der Sluys et al., 1992), but is comparable with the U—O distance of 2.50(1) Å to the methanol ligand in UO₂(thd)₂(MeOH), where thd is tetramethylheptane-3,5-dionate (Mackinnon & Taylor, 1983).

The Th-Cl distance of 2.7066(8) Å may be compared with that of 2.710(7) Å in ThCl₄(MeOH)₂-(H₂O)₂·15-crown-5·CH₃CN (Rogers & Benning, 1988), 2.688 (2)–2.692 (2) Å in ThCL₄(Me₂NCH₂CH₂NMe₂)₂ (Rabinovich et al., 1997) and 2.7038 (10)-2.7198 (10) Å in $[ThCl_4(thf)_3(H_2O)]$ ·thf (Spry et al., 1997). The Th-O bond length to the isopropanol ligands [2.515(2) Å] is intermediate between the Th-O distances to the methanol ligands in ThCl₄(MeOH)₂- $(H_2O)_2 \cdot 15$ -crown-5·CH₃CN, which have a mean value of 2.562 (3) Å (Rogers & Benning, 1988), and the Th-O distance to the isopropanol ligands in $Th_2I_4(O'Pr)_4$ -(ⁱPrOH)₂ of 2.437 (6) Å (Barnhart et al., 1995).

There are two types of Cl-M-Cl angles in each complex, namely 95.713 (13) and 143.22 (4)° in (I), and 95.838 (10) and 142.80 (3)° for (II). Similarly, O-M-O angles are also of two types, namely 69.79(14) and $132.28(9)^{\circ}$ for (I), and 70.30(10) and $131.96(7)^{\circ}$ for **(II)**.

Experimental

Approximately 5 g of cleaned metal turnings of the appropriate metal were placed in a Schlenk flask and 30 ml of dried degassed isopropanol was added. Chlorine gas, diluted with nitrogen, was bubbled through the solution at the rate of 0.02- $0.061 \,\mathrm{min}^{-1}$ for 30 min. The resulting solution was filtered,

and the filtrate was allowed to evaporate slowly under an inert atmosphere to produce colorless (thorium) or pale-green (uranium) crystals of the title compounds.

Mo $K\alpha$ radiation

Cell parameters from 25 reflections

 $0.25 \times 0.23 \times 0.21$ mm

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 11.6 - 14.0^{\circ}$

 $\mu = 8.03 \text{ mm}^{-1}$

T = 203 K

 $R_{\rm int} = 0.047$

 $\theta_{\rm max} = 24.95^{\circ}$

 $h = -12 \rightarrow 0$

 $k = -12 \rightarrow 0$

 $l = -24 \rightarrow 24$

3 standard reflections

frequency: 120 min

intensity decay: <2%

Block

Green

Compound (I)

Crystal data $[UCl_4(C_3H_8O)_4]$ $M_r = 620.21$ Tetragonal $I4_{1}/a$ a = 10.330(1) Å c = 20.222 (4) Å $V = 2157.9(5) \text{ Å}^3$ Z = 4 $D_{\rm r} = 1.909 {\rm Mg} {\rm m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer $2\theta/\theta$ scans Absorption correction: empirical (Siemens, 1994a) $T_{\rm min} = 0.16, T_{\rm max} = 0.18$

2122 measured reflections 948 independent reflections 853 reflections with $I > 2\sigma(I)$

Refinement

υı

CI 0

C1

C2 C3

O'-

$(\Delta/\sigma)_{\rm max} < 0.001$ Refinement on F^2 $\Delta \rho_{\rm max} = 0.54 \, {\rm e} \, {\rm \AA}^{-3} \, (1.13 \, {\rm \AA})$ $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.051$ from U1) $\Delta \rho_{\rm min} = -1.18 \, {\rm e} \, {\rm \AA}^{-3}$ S = 1.07948 reflections (1.02 Å from U1) 48 parameters Extinction correction: none H-atom parameters not Scattering factors from refined International Tables for $w = 1/[\sigma^2(F_o^2) + (0.0209P)^2]$ Crystallography (Vol. C) where $P = (F_o^2 + 2F_c^2)/3$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

X	У	z	U_{eq}
1/2	3/4	1/8	0.01369 (12)
0.26774 (10)	0.67779(11)	0.16631 (5)	0.0224 (2)
0.3711 (3)	0.7027 (3)	0.02448 (13)	0.0199 (6)
0.2429 (4)	0.7429 (4)	0.0007 (2)	0.0220 (9)
0.2582 (5)	0.8061 (5)	-0.0667(2)	0.0298 (11)
0.1525 (4)	0.6271 (5)	0.0002(2)	0.0269 (10)

Table 2. Selected geometric parameters (Å, $^{\circ}$) for (I)

U1—0 U1—C1 O—C1	2.478 (3) 2.6478 (10) 1.469 (5)	C1C3 C1C2	1.518 (6) 1.519 (6)
0 ⁱ -U1-O ⁱⁱ	69.79 (14)	CIUICI ⁿ	95.713 (13)
0 ⁱ -U1-O	132.28 (9)	OUICI ⁱ	76.61 (7)
0-U1-Cl ⁱⁱⁱ	143.22 (7)	CIUICI ⁱ	95.713 (13)
0 ⁱ -U1-Cl	73.38 (7)	CIOUI	134.2 (2)

0 ⁱⁱ	76.62 (7)	0C1C3	109.5 (3)		
0-U1-Cl	73.54 (7)	0C1C2	108.8 (4)		
Cl ⁱⁱⁱ —U1—Cl	143.22 (4)	C3C1C2	113.4 (4)		
Symmetry codes: (i) $y - \frac{1}{4}, \frac{5}{4} - x, \frac{1}{4} - z$; (ii) $\frac{5}{4} - y, \frac{1}{4} + x, \frac{1}{4} - z$; (iii)					
$1 - x, \frac{3}{2} - y, z.$					

Mo $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 13.8 - 14.0^{\circ}$

 $\mu = 7.19 \text{ mm}^{-1}$

 $0.6 \times 0.4 \times 0.2$ mm

every 97 reflections intensity decay: none

T = 203 K

Colorless

Block

Compound (II)

Crystal data

 $[ThCl_4(C_3H_8O)_4]$ $M_r = 614.22$ Tetragonal $I4_{1}/a$ a = 10.447 (1) Å c = 20.395 (1) Å V = 2225.9 (3) Å³ Z = 4 $D_x = 1.833 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Siemens R3m/V diffractom-	$R_{\rm int} = 0.023$
eter	$\theta_{\rm max} = 30^{\circ}$
ω scans	$h = -1 \rightarrow 14$
Absorption correction:	$k = -1 \rightarrow 14$
empirical (Siemens,	$l = -1 \rightarrow 28$
1994a)	3 standard reflections
$T_{\rm min} = 0.06, T_{\rm max} = 0.24$	every 97 reflections
2232 measured reflections	intensity decay: not
1622 independent reflections	
1405 reflections with	
$I > 2\sigma(I)$	

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} < 0.001$ $R[F^2 > 2\sigma(F^2)] = 0.021$ $\Delta \rho_{\rm max} = 1.22 \, {\rm e} \, {\rm \AA}^{-3} \, (0.79 \, {\rm \AA})$ $wR(F^2) = 0.045$ from Th1) $\Delta \rho_{\rm min} = -0.77 \, {\rm e} \, {\rm \AA}^{-3}$ S = 1.181622 reflections (1.11 Å from Th1) 51 parameters Extinction correction: none H atoms treated by a Scattering factors from mixture of independent International Tables for and constrained refinement Crystallography (Vol. C) $w = 1/[\sigma^2(F_o^2) + (0.0208P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (II)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	U_{eq}
Thl	1/2	3/4	1/8	0.01541 (6)
Cl	0.26561 (7)	0.67680 (8)	0.16733 (4)	0.02942 (16)
0	0.3701 (2)	0.7018 (2)	0.02418 (10)	0.0248 (4)
HOI	0.399 (5)	0.645 (6)	0.000(3)	0.080
C1	0.2443 (3)	0.7430(3)	0.00090 (14)	0.0276 (7)
C2	0.2587 (4)	0.8050 (4)	-0.06572 (17)	0.0428 (9)
C3	0.1529 (3)	0.6302 (4)	0.00036 (19)	0.0389 (8)

Table 4. Selected geometric parameters (Å, °) for (II)

Th1—O	2.515(2)	0C1	1.462 (3)
Th1Cl	2.7066 (8)	C1C2	1.513 (5)
0—HO1	0.83 (6)	C1C3	1.517(5)

O'—Th1—O"	70.30 (10)	Cl—Thl—Cl	95.838 (10)
O'—Th1—O	131.96(7)	HO1OC1	110 (4)
O-Th1-Cl ⁱⁱⁱ	143.67 (5)	HO1—O—Th1	116 (4)
O ⁱ —Th1—Cl	73.18 (5)	C1—O—Th1	133.78 (16)
O—Th1—Cl	73.50(5)	0-C1-C2	109.1 (3)
Cl ^m —Th1—Cl	142.80(3)	0C1C3	109.8 (2)
O—Thl—Cl'	76.57 (5)	C2C1C3	112.9 (3)
Symmetry codes:	(i) $y - \frac{1}{4}, \frac{5}{4} - x,$	$\frac{1}{4} - z$; (ii) $\frac{5}{4} - y$,	$\frac{1}{4} + x, \frac{1}{4} - z;$ (iii)

 $1-x, \tfrac{3}{2}-y, z.$

For (I), all H atoms were refined using geometry constraints and a riding model. Isotropic displacement parameters were set at 0.05 Å². For (II), all H atoms, except for the alcohol H atom, were refined using geometry constraints and a riding model. These idealized H atoms were refined with isotropic displacement parameters set to 1.5 (methyl) or 1.2 (methine) times the equivalent isotropic U value of the parent atom. The alcohol H-atom coordinates were refined with the isotropic displacement parameter fixed at 0.08 $Å^2$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (I); XSCANS (Siemens, 1994b) for (II). Cell refinement: CAD-4 Software for (I); XSCANS for (II). Data reduction: XCAD4 (Harms & Wocadlo, 1996) for (I); XSCANS for (II). For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Siemens, 1994a).

We acknowledge the Nuclear Materials Stockpile Management Program for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1458). Services for accessing these data are described at the back of the journal.

References

- Barnhart, D. M., Frankcom, T. M., Gordon, P. L., Sauer, N. N., Thompson, J. A. & Watkin, J. G. (1995). Inorg. Chem. 34, 4862-4867
- Cotton, F. A., Marler, D. O. & Schwotzer, W. (1984). Acta Cryst. C40, 1186-1188.
- El Aggan, A. M. (1973). Egypt. J. Chem. 16, 13-18.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1996). XCAD4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Kepert, D. L. (1978). Prog. Inorg. Chem. 24, 179-249.
- Mackinnon, P. I. & Taylor, J. C. (1983). Polyhedron, 2, 217-24.
- Rabinovich, D., Schimek, G. L., Pennington, W. T., Nielsen, J. B. & Abney, K. D. (1997). Acta Cryst. C53, 191-193.
- Rogers, R. D. & Benning, M. M. (1988). Acta Cryst. C44, 641-644.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of
- Crystal Structures. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. Program for Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994a). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994b). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, B. C., Thakur, L. & Wassef, M. A. (1969). Indian J. Chem. 7, 1154-1157.
- Spry, M. P., Errington, W. & Willey, G. R. (1997). Acta Cryst. C53, 1388-1390.

- Van der Sluys, W. G., Berg, J. M., Barnhart, D. & Sauer, N. N. (1993). Inorg. Chim. Acta, 204, 251–256.
- Van der Sluys, W. G., Huffman, J. C., Ehler, D. S. & Sauer, N. N. (1992). *Inorg. Chem.* **31**, 1316–1318.

fur oxoanion complexes, we report herein the crystal structure of the title compound, (I).

Acta Cryst. (1999). C55, 1278-1280

Poly[[[aqua(2,2'-bipyridine-N,N')cadmium(II)]-µ₃-sulfito-O:O:O'] hydrate]

Miguel Harvey,^a Sergio Baggio,^b Ricardo Baggio^c and Helena Pardo^d

^aUniversidad Nacional de la Patagonia, Sede Trelew, 9100 Trelew, and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ^bUniversidad Nacional de la Patagonia, Sede Puerto Madryn, and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ^cDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ^dLaboratorio de Cristalografía y Química del Estado Sólido, Facultad de Química, Universidad de la República, Montevideo, Uruguay. E-mail: baggio@cnea. gov.ar

(Received 15 December 1998; accepted 14 April 1999)

Abstract

The title compound, ${[Cd(SO_3)(C_{10}H_8N_2)(H_2O)]}$. H₂O}_n, consists of ladder-type chains formed by distorted CdN₂O₄ octahedra replicated by two different types of embedded symmetry centres. The sulfite anion displays a regular geometry and coordinates through two O atoms, the third O atom only being involved in hydrogen bonding.

Comment

The sulfite ion has been extensively studied as a component of many coordination compounds [34 entries in the 1998 version of the Cambridge Structural Database (CSD; Allen & Kennard, 1993)]. As demonstrated therein, the anion is able to adopt different modes of coordination depending on the characteristics of the metal present, due to its being composed both of soft (S) and hard (O) bases, according to Pearson's classification (Pearson, 1973).

However, and in spite of the great number of sulfitecontaining organometallic compounds described in the literature, not a single crystallographic study has been reported on sulfite-cadmium complexes, the only structurally related studies being those performed on cadmium sulfite salts by Kiers & Vos (1978) and Engelen *et al.* (1987). Pursuant of our interest in cadmium sul-

The cadmium ion interacts with the bidentate bipyridine, three symmetry-related sulfite groups and a coordination water molecule, all of which provide a heavily distorted octahedral environment, with N1, N2, O3ⁱⁱ and O1W occupying the equatorial positions, and O3 and O1ⁱ occupying the apical sites [symmetry codes: (i) x, y, z-1; (ii) 1-x, -y, 1-z] (Fig. 1). The degree of deformation achieved by the polyhedron can be assessed by the maximum deviations from ideal geometry: N1 deviates by 0.111 (2) Å from the equatorial plane and Cd— $O1^{i}$ is 17.6(1)° from the normal to the plane. Even the (in principle equivalent) Cd—N bonds display a striking difference of ca 5% in length as a result of the overall strain developed. A search in the CSD showed this difference to be in the upper 20% of the distribution for ca 3000 cases explored.

Fig. 1. Molecular diagram showing the numbering scheme used, as well as details of the cation coordination environment and some interchain hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 50% probability level.